Author:
Sankey Temuulen,Tatum Julia
Abstract
AbstractRegional droughts are now widespread and are projected to further increase. Semi-arid ponderosa pine forests across the western USA, which occupy > 56 million ha, are experiencing unprecedented levels of drought due to the currently ongoing North American megadrought. Using unpiloted aerial vehicle (UAV) thermal images and ground-based hyperspectral data, here we show that ponderosa pine forest canopy temperatures increased during the 2021 summer drought up to 34.6 °C, far above a typical canopy temperature when ponderosa pine trees no longer uptake carbon. We infer that much of the western US ponderosa pine forests likely served as a net carbon source rather than a sink during the 2021 summer drought period. We also demonstrate that regional forest restoration thinning significantly reduced the drought impacts. Thinned ponderosa pine forests had significantly lower increase in canopy temperature and canopy water stress during the drought period compared to the non-thinned forest stands. Furthermore, our extensive soil moisture network data indicate that available soil moisture in the thinned forest was significantly greater at all soil depths of 25 cm, 50 cm, and 100 cm compared to the non-thinned forest, where soil moisture dry-down in the spring started significantly earlier and stayed dry for one month longer causing critical water stress for trees. Forest restoration thinning benefits that are otherwise unappreciated during average precipitation years are significantly amplified during unprecedented drought periods.
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献