Forest Treatment Effects on Watershed Responses Under Warming

Author:

Cederstrom Charles J.1,Vivoni Enrique R.12ORCID,Mascaro Giuseppe12ORCID,Svoma Bohumil3ORCID

Affiliation:

1. School of Sustainable Engineering and the Built Environment Arizona State University Tempe AZ USA

2. Center for Hydrologic Innovations Arizona State University Tempe AZ USA

3. Surface Water Resources Salt River Project Tempe AZ USA

Abstract

AbstractThe effects of forest treatments on watershed hydrology have often been studied in isolation from climate change. Consequently, under a warming climate, it is unclear how forest thinning will impact snowpacks, evapotranspiration, and streamflow availability. In this study, we used a distributed hydrologic model to provide insight into the effects of warming and forest treatment on the hydrologic response of the Beaver Creek watershed (∼1,100 km2) of central Arizona. Prior to the numerical experiments, confidence in the hydrologic model performance was established by comparisons to long‐term observations (2003–2018) of snow water equivalent and streamflow using station observations and through spatially distributed estimates. Results indicated that warming during the 21st century could increase mean annual streamflow by 1.5% for warming levels up to +1°C, followed by a −29% decrease for continued warming up to +6°C, due to the varying effects of warming on snow sublimation, soil evaporation, and plant transpiration. On average, forest thinning increased streamflow by +12% (or 7 mm/yr) through lower plant transpiration by −19% (or −18 mm/yr), while also increasing the change in soil water storage by +42% (or 11 mm/yr). Forest thinning delayed the detrimental effects of warming on streamflow until +4°C, as compared to +2°C without forest treatment. Furthermore, model results suggested that forest cover reductions laterally displace water availability and evapotranspiration to downstream sites. These model‐derived mechanisms provide insights on the potential for water resilience toward warming effects afforded through treatment projects in southwestern US ponderosa pine forests.

Funder

Salt River Project

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3