Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studies

Author:

Normand Aubin C.,Charrier Anne M.,Arnould Olivier,Lereu Aude L.

Abstract

AbstractSince the established correlations between mechanical properties of a piece of wood at the macroscopic scale and those of the cell wall at the submicron scale, techniques based on atomic force microscopy (AFM) have become widespread. In particular Peak Force tapping, allowing the differentiation of various layers, has become the new standard for wood cell wall’s nanomechanical characterization. However, its use requires fully elastic indentation, a good knowledge of stiffness of the probe and assumes a perfect tip shape of known radius (sphere) or angle (cone). Those strong hypotheses can result in large approximations in the extracted parameters for complex, nanostructured, and stiff and viscous materials such as wood. In this work, we propose a reliable and complementary alternative based on AFM force-volume indentation by refining the Oliver and Pharr nanoindentation processing and calibration procedure for AFM cantilever and tip. The introduced area-function calibration (AFC) method allows to considerably reduce these approximations and provides semi-quantitative measurements. No prior knowledge of the tip shape and cantilever stiffness are required and viscoplasticity is investigated through a qualitative index. Indentation parameters variations are shown to impact the resulting measurements, i.e., indentation modulus, viscoplasticity index, adhesion force and energy. AFC method, applied to map regions of tension wood, provides very stable mechanical parameters characteristic of each region, which makes this method of high interest for plant cell wall studies.

Funder

A*MIDEX fundation

PICS2019 CNRS collaborative program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3