Nanomechanical/Micromechanical Approach to the Problems of Dendrochronology and Dendroclimatology

Author:

Golovin Yu. I.,Samodurov A. A.,Gusev A. A.,Tyurin A. A.,Golovin D. Yu.,Vasyukova I. A.,Yunak M. A.

Abstract

AbstractThe most widespread approach in dendrochronology (wood dating) and dendroclimatology (climate reconstruction) is based on measurement of the width of annual growth rings by analyzing optical images of wood cross sections. This approach is quite efficient and easy to implement but it has inherent drawbacks. Raw data for these techniques originate from the optical properties of the wood surface, which are not directly related to other properties of wood, mechanical properties in particular. This paper describes a new quantitative approach applicable to dendrochronology and dendroclimatology based upon measurement of the micromechanical properties of wood by employing nanoindendation and digital sclerometry. It yields not only the width of annual growth rings and early and late wood layers with an accuracy not inferior to optical methods, but also rich data on the mechanical properties of the wood with a high spatial resolution that could be brought to subcellular scale if necessary. This data can be used for the dendrochronological analysis of archeological finds and the evaluation of climatic parameters during tree growth with a time resolution of up to a month or even better, which is unlike other common methods with a time resolution of one year. Moreover, the detailed continuous profiling of local mechanical properties can form a basis for improving our understanding of the nature and mechanisms of the formation of macromechanical properties important for applications and can clarify the climate factors that have the greatest impact on such properties.

Publisher

Pleiades Publishing Ltd

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous),Condensed Matter Physics,General Materials Science,Biomedical Engineering,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3