Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains

Author:

Gong Lu,Chen Xin,Zhang Xueni,Yang Xiaodong,Cai Yanjiang

Abstract

Abstract Seasonal snowfall, a sensitive climate factor and the main form of precipitation in arid areas, is important for forest material circulation and surface processes and profoundly impacts litter decomposition and element turnover. However, how the thickness and duration of snow cover affect litter decomposition and element release remain unclear. Thus, to understand the effects of snow on litter decomposition, fiber degradation and their relationships with soil properties, a field litterbag experiment was conducted under no, thin, medium, and thick snow cover in a Schrenk spruce (Picea schrenkiana) forest gap in the Tianshan Mountains. The snow cover period exhibited markedly lower rates of decomposition than the snow-free period. The litter lignin, cellulose and N concentrations in the pregrowing season and middle growing season were significantly higher than those in the deep-freeze period, and the litter C and P concentrations were significantly higher during the onset of the freeze–thaw period, deep-freeze period and thaw period than in the late growing season. The litter cellulose, C and N concentrations were significantly higher under thick snow cover than under no snow cover in most stages. Moreover, the correlations among litter mass, cellulose, lignin/cellulose and soil bulk density varied with snow cover depth. The temporal variations and snow cover depth affected the decomposition process significantly. The former affected lignin, cellulose and P, and the latter affected cellulose, C and N and changed the litter-soil properties relationship. These differences provide references for understanding how winter conditions affect material cycling and other ecological processes under climate change.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3