Green synthesis of TiO2 for furfural production by photohydrolysis of tortilla manufacturing waste

Author:

López-Mercado Janneth,González-Domínguez Martha-Isabel,Reynoso-Marin Francisco-Javier,Acosta Brenda,Smolentseva Elena,Nambo Apolo

Abstract

AbstractCorn nixtamalization generates a waste byproduct that requires diverse environmental preservation measures depending on the country. Such measures could include catalytic and advanced oxidation processes. This study aims to exploit the hemicellulose within the nejayote (32.5%) to create added value chemicals such as furfural using photocatalytic hydrolysis. In the present work, titania (TiO2) nanoparticles (NPs) were greenly synthesized using Ricinus Communis (RC), Moringa Oleifera (MO) or Bougainvillea Spectabilis (BS) plant extracts. Obtained nanoparticles were characterized using XRD, SEM, EDS, BET, XPS and UV–vis techniques. Furthermore, the photocatalytic performance of the obtained samples was evaluated in the furfural production from nejayote. Furfural yield reached 44% in 30 min using the BS synthesized material, which is 1.6 × the yield obtained by the material synthesized with MO extract (26.4% at 45 min) and 6 × the yield obtained by the material obtained with RC (7.2% at 90 min). Such results have not been reported before in the literature and could be the groundwork for novel waste treatments in the tortilla-making industry.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3