A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress

Author:

Gorrochategui-Ortega June,Muñoz-Colmenero Marta,Kovačić Marin,Filipi Janja,Puškadija Zlatko,Kezić Nikola,Parejo Melanie,Büchler Ralph,Estonba Andone,Zarraonaindia Iratxe

Abstract

AbstractHoneybee health and the species’ gut microbiota are interconnected. Also noteworthy are the multiple niches present within hives, each with distinct microbiotas and all coexisting, which we termed “apibiome”. External stressors (e.g. anthropization) can compromise microbial balance and bee resilience. We hypothesised that (1) the bacterial communities of hives located in areas with different degrees of anthropization differ in composition, and (2) due to interactions between the multiple microbiomes within the apibiome, changes in the community of a niche would impact the bacteria present in other hive sections. We characterised the bacterial consortia of different niches (bee gut, bee bread, hive entrance and internal hive air) of 43 hives from 3 different environments (agricultural, semi-natural and natural) through 16S rRNA amplicon sequencing. Agricultural samples presented lower community evenness, depletion of beneficial bacteria, and increased recruitment of stress related pathways (predicted via PICRUSt2). The taxonomic and functional composition of gut and hive entrance followed an environmental gradient. Arsenophonus emerged as a possible indicator of anthropization, gradually decreasing in abundance from agriculture to the natural environment in multiple niches. Importantly, after 16 days of exposure to a semi-natural landscape hives showed intermediate profiles, suggesting alleviation of microbial dysbiosis through reduction of anthropization.

Funder

Department of Agriculture, Fisheries and Food of the Basque Government

Dept. of Economic Development and Competitiveness of the Basque Government

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3