A sustainable bio-based char as emerging electrode material for energy storage applications

Author:

Hristea Gabriela,Iordoc Mihai,Lungulescu Eduard-Marius,Bejenari Iuliana,Volf Irina

Abstract

AbstractIn the last few years, extensive research efforts have been made to develop novel bio-char-based electrodes using different strategies starting from a variety of biomass precursors as well as applying different thermochemical conversion paths. In this regard, hydrothermal carbonization method is becoming a more prevalent option among conversion procedures even if pyrolysis remains crucial in converting biomass into carbonaceous materials. The main aim of this study is to develop an innovative supercapacitor electrode from spruce bark waste through a unique low-temperature technique approach, which proved to effectively eliminate the pyrolysis step. Consequently, a hybrid spruce-bark-graphene oxide compound (HySB) was obtained as electrode material for supercapacitors. When compared to a regularly used commercial electrode material, SLC1512P graphite (reference) with 150.3 µF cm−2 capacitance, the HySB has a substantially higher capacitive performance of 530.5 µF cm−2. In contrast to the reference, the HySB polarization resistance increases by two orders of magnitude at the stationary potential and by three orders of magnitude at the optimum potential, underlying that the superior performances of HySB extend beyond static conditions. The synthesis strategy provides an appropriate energy-efficient option for converting biomass into carbonaceous materials with meaningful properties suitable for energy storage applications.

Funder

Ministry of Research, Innovation and Digitalization, CNCS-UEFISCDI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3