Development and validation of a practical machine-learning triage algorithm for the detection of patients in need of critical care in the emergency department

Author:

Liu Yecheng,Gao Jiandong,Liu Jihai,Walline Joseph Harold,Liu Xiaoying,Zhang Ting,Wu Yunyang,Wu Ji,Zhu Huadong,Zhu Weiguo

Abstract

AbstractIdentifying critically ill patients is a key challenge in emergency department (ED) triage. Mis-triage errors are still widespread in triage systems around the world. Here, we present a machine learning system (MLS) to assist ED triage officers better recognize critically ill patients and provide a text-based explanation of the MLS recommendation. To derive the MLS, an existing dataset of 22,272 patient encounters from 2012 to 2019 from our institution’s electronic emergency triage system (EETS) was used for algorithm training and validation. The area under the receiver operating characteristic curve (AUC) was 0.875 ± 0.006 (CI:95%) in retrospective dataset using fivefold cross validation, higher than that of reference model (0.843 ± 0.005 (CI:95%)). In the prospective cohort study, compared to the traditional triage system’s 1.2% mis-triage rate, the mis-triage rate in the MLS-assisted group was 0.9%. This MLS method with a real-time explanation for triage officers was able to lower the mis-triage rate of critically ill ED patients.

Funder

Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences

National Key Research & Development Program of China

Beijing Municipal Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3