Interpretable Deep Learning System for Identifying Critical Patients Through the Prediction of Triage Level, Hospitalization, and Length of Stay: Prospective Study

Author:

Lin Yu-TingORCID,Deng Yuan-XiangORCID,Tsai Chu-LinORCID,Huang Chien-HuaORCID,Fu Li-ChenORCID

Abstract

Background Triage is the process of accurately assessing patients’ symptoms and providing them with proper clinical treatment in the emergency department (ED). While many countries have developed their triage process to stratify patients’ clinical severity and thus distribute medical resources, there are still some limitations of the current triage process. Since the triage level is mainly identified by experienced nurses based on a mix of subjective and objective criteria, mis-triage often occurs in the ED. It can not only cause adverse effects on patients, but also impose an undue burden on the health care delivery system. Objective Our study aimed to design a prediction system based on triage information, including demographics, vital signs, and chief complaints. The proposed system can not only handle heterogeneous data, including tabular data and free-text data, but also provide interpretability for better acceptance by the ED staff in the hospital. Methods In this study, we proposed a system comprising 3 subsystems, with each of them handling a single task, including triage level prediction, hospitalization prediction, and length of stay prediction. We used a large amount of retrospective data to pretrain the model, and then, we fine-tuned the model on a prospective data set with a golden label. The proposed deep learning framework was built with TabNet and MacBERT (Chinese version of bidirectional encoder representations from transformers [BERT]). Results The performance of our proposed model was evaluated on data collected from the National Taiwan University Hospital (901 patients were included). The model achieved promising results on the collected data set, with accuracy values of 63%, 82%, and 71% for triage level prediction, hospitalization prediction, and length of stay prediction, respectively. Conclusions Our system improved the prediction of 3 different medical outcomes when compared with other machine learning methods. With the pretrained vital sign encoder and repretrained mask language modeling MacBERT encoder, our multimodality model can provide a deeper insight into the characteristics of electronic health records. Additionally, by providing interpretability, we believe that the proposed system can assist nursing staff and physicians in taking appropriate medical decisions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3