Author:
Harada Shunta,Mii Toshiki,Sakane Hitoshi,Kato Masashi
Abstract
AbstractSiC bipolar degradation, which is caused by stacking fault expansion from basal plane dislocations in a SiC epitaxial layer or near the interface between the epitaxial layer and the substrate, is one of the critical problems inhibiting widespread usage of high-voltage SiC bipolar devices. In the present study, we investigated the stacking fault expansion behavior under UV illumination in a 4H-SiC epitaxial layer subjected to proton irradiation. X-ray topography observations revealed that proton irradiation suppressed stacking fault expansion. Excess carrier lifetime measurements showed that stacking fault expansion was suppressed in 4H-SiC epitaxial layers with proton irradiation at a fluence of 1 × 1011 cm−2 without evident reduction of the excess carrier lifetime. Furthermore, stacking fault expansion was also suppressed even after high-temperature annealing to recover the excess carrier lifetime. These results implied that passivation of dislocation cores by protons hinders recombination-enhanced dislocation glide motion under UV illumination.
Funder
New Energy and Industrial Technology Development Organization,Japan
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献