Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy

Author:

Cha MyeounghoonORCID,Lee Kyung HeeORCID,Lee Bae HwanORCID

Abstract

AbstractAlthough astrocytes are known to regulate synaptic transmission and affect new memory formation by influencing long-term potentiation and functional synaptic plasticity, their role in pain modulation is poorly understood. Motor cortex stimulation (MCS) has been used to reduce neuropathic pain through the incertothalamic pathway, including the primary motor cortex (M1) and the zona incerta (ZI). However, there has been no in-depth study of these modulatory effects and region-specific changes in neural plasticity. In this study, we investigated the effects of MCS-induced pain modulation as well as the relationship between the ZI neuroplasticity and MCS-induced pain alleviation in neuropathic pain (NP). MCS-induced threshold changes were evaluated after daily MCS. Then, the morphological changes of glial cells were compared by tissue staining. In order to quantify the neuroplasticity, MAP2, PSD95, and synapsin in the ZI and M1 were measured and analyzed with western blot. In behavioral test, repetitive MCS reduced NP in nerve-injured rats. We also observed recovered GFAP expression in the NP with MCS rats. In the NP with sham MCS rats, increased CD68 level was observed. In the NP with MCS group, increased mGluR1 expression was observed. Analysis of synaptogenesis-related molecules in the M1 and ZI revealed that synaptic changes occured in the M1, and increased astrocytes in the ZI were more closely associated with pain alleviation after MCS. Our findings suggest that MCS may modulate the astrocyte activities in the ZI and synaptic changes in the M1. Our results may provide new insight into the important and numerous roles of astrocytes in the formation and function.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3