Deep convolution stack for waveform in underwater acoustic target recognition

Author:

Tian Shengzhao,Chen Duanbing,Wang Hang,Liu Jingfa

Abstract

AbstractIn underwater acoustic target recognition, deep learning methods have been proved to be effective on recognizing original signal waveform. Previous methods often utilize large convolutional kernels to extract features at the beginning of neural networks. It leads to a lack of depth and structural imbalance of networks. The power of nonlinear transformation brought by deep network has not been fully utilized. Deep convolution stack is a kind of network frame with flexible and balanced structure and it has not been explored well in underwater acoustic target recognition, even though such frame has been proven to be effective in other deep learning fields. In this paper, a multiscale residual unit (MSRU) is proposed to construct deep convolution stack network. Based on MSRU, a multiscale residual deep neural network (MSRDN) is presented to classify underwater acoustic target. Dataset acquired in a real-world scenario is used to verify the proposed unit and model. By adding MSRU into Generative Adversarial Networks, the validity of MSRU is proved. Finally, MSRDN achieves the best recognition accuracy of 83.15%, improved by 6.99% from the structure related networks which take the original signal waveform as input and 4.48% from the networks which take the time-frequency representation as input.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3