Model for Underwater Acoustic Target Recognition with Attention Mechanism Based on Residual Concatenate

Author:

Chen Zhe12,Xie Guohao3,Chen Mingsong12,Qiu Hongbing12

Affiliation:

1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

2. Cognitive Radio and Information Processing Key Laboratory Authorized by China’s Ministry of Education Foundation, Guilin University of Electronic Technology, Guilin 541004, China

3. School of Ocean Engineering, Guilin University of Electronic Technology, Beihai 536000, China

Abstract

Underwater acoustic target recognition remains a formidable challenge in underwater acoustic signal processing. Current target recognition approaches within underwater acoustic frameworks predominantly rely on acoustic image target recognition models. However, this method grapples with two primary setbacks; the pronounced frequency similarity within acoustic images often leads to the loss of critical target data during the feature extraction phase, and the inherent data imbalance within the underwater acoustic target dataset predisposes models to overfitting. In response to these challenges, this research introduces an underwater acoustic target recognition model named Attention Mechanism Residual Concatenate Network (ARescat). This model integrates residual concatenate networks combined with Squeeze-Excitation (SE) attention mechanisms. The entire process culminates with joint supervision employing Focal Loss for precise feature classification. In our study, we conducted recognition experiments using the ShipsEar database and compared the performance of the ARescat model with the classic ResNet18 model under identical feature extraction conditions. The findings reveal that the ARescat model, with a similar quantity of model parameters as ResNet18, achieves a 2.8% higher recognition accuracy, reaching an impressive 95.8%. This enhancement is particularly notable when comparing various models and feature extraction methods, underscoring the ARescat model’s superior proficiency in underwater acoustic target recognition.

Funder

Key Laboratory of Cognitive Radio and Information Processing of the Ministry of Education

Special Program of Guangxi Science and Technology Base and Talent

Guangxi Natural Science Foundation

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3