Author:
Ota Junko,Umehara Kensuke,Kershaw Jeff,Kishimoto Riwa,Hirano Yoshiyuki,Tachibana Yasuhiko,Ohba Hisateru,Obata Takayuki
Abstract
AbstractThe spatial resolution of fMRI is relatively poor and improvements are needed to indicate more specific locations for functional activities. Here, we propose a novel scheme, called Static T2*WI-based Subject-Specific Super Resolution fMRI (STSS-SRfMRI), to enhance the functional resolution, or ability to discriminate spatially adjacent but functionally different responses, of fMRI. The scheme is based on super-resolution generative adversarial networks (SRGAN) that utilize a T2*-weighted image (T2*WI) dataset as a training reference. The efficacy of the scheme was evaluated through comparison with the activation maps obtained from the raw unpreprocessed functional data (raw fMRI). MRI images were acquired from 30 healthy volunteers using a 3 Tesla scanner. The modified SRGAN reconstructs a high-resolution image series from the original low-resolution fMRI data. For quantitative comparison, several metrics were calculated for both the STSS-SRfMRI and the raw fMRI activation maps. The ability to distinguish between two different finger-tapping tasks was significantly higher [p = 0.00466] for the reconstructed STSS-SRfMRI images than for the raw fMRI images. The results indicate that the functional resolution of the STSS-SRfMRI scheme is superior, which suggests that the scheme is a potential solution to realizing higher functional resolution in fMRI images obtained using 3T MRI.
Funder
Japan Society for the Promotion of Science
QST President's Strategic Grant for Exploratory Research
QST Advanced Study Laboratory
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献