Uncertainty-driven mixture convolution and transformer network for remote sensing image super-resolution

Author:

Zhang Xiaomin

Abstract

AbstractRecently, convolutional neural networks (CNNs) and Transformer-based Networks have exhibited remarkable prowess in the realm of remote sensing image super-resolution (RSISR), delivering promising results in the field. Nevertheless, the effective fusion of the inductive bias inherent in CNNs and the long-range modeling capabilities encapsulated within the Transformer architecture remains a relatively uncharted terrain in the context of RSISR endeavors. Accordingly, we propose an uncertainty-driven mixture convolution and transformer network (UMCTN) to earn a performance promotion. Specifically, to acquire multi-scale and hierarchical features, UMCTN adopts a U-shape architecture. Utilizing the dual-view aggregation block (DAB) based residual dual-view aggregation group (RDAG) in both encoder and decoder, we solely introduce a pioneering dense-sparse transformer group (DSTG) into the latent layer. This design effectively eradicates the considerable quadratic complexity inherent in vanilla Transformer structures. Moreover, we introduce a novel uncertainty-driven Loss (UDL) to steer the network’s attention towards pixels exhibiting significant variance. The primary objective is to elevate the reconstruction quality specifically in texture and edge regions. Experimental outcomes on the UCMerced LandUse and AID datasets unequivocally affirm that UMCTN achieves state-of-the-art performance in comparison to presently prevailing methodologies.

Funder

Key Scientific Research Cultivation Projects of Fujian Polytechnic of Information Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3