Influence of duck eggshell powder modifications by the calcination process or addition of iron (III) oxide-hydroxide on lead removal efficiency

Author:

Praipipat Pornsawai,Ngamsurach Pimploy,Tannadee Rattanaporn

Abstract

AbstractLead-contaminated wastewater causes toxicity to aquatic life and water quality for water consumption, so it is required to treat wastewater to be below the water quality standard before releasing it into the environment. Duck eggshell powder (DP), duck eggshell powder mixed iron (III) oxide-hydroxide (DPF), calcinated duck eggshell powder (CDP), and calcinated duck eggshell powder mixed iron (III) oxide-hydroxide (CDPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. CDPF demonstrated the highest specific surface area and pore volume with the smallest pore size than other materials, and they were classified as mesoporous materials. DP and DPF demonstrated semi-crystalline structures with specific calcium carbonate peaks, whereas CDP and CDPF illustrated semi-crystalline structures with specific calcium oxide peaks. In addition, the specific iron (III) oxide-hydroxide peaks were detected in only DPF and CDPF. Their surface structures were rough with irregular shapes. All materials found carbon, oxygen, and calcium, whereas iron, sodium, and chloride were only found in DPF and CDPF. All materials were detected O–H, C=O, and C–O, and DPF and CDPF were also found Fe–O from adding iron (III) oxide-hydroxide. The point of zero charges of DP, DPF, CDP, and CDPF were 4.58, 5.31, 5.96, and 6.75. They could adsorb lead by more than 98%, and CDPF illustrated the highest lead removal efficiency. DP and CDP corresponded to the Langmuir model while DPF and CDPF corresponded to the Freundlich model. All materials corresponded to a pseudo-second-order kinetic model. Moreover, they could be reusable for more than 5 cycles for lead adsorption of more than 73%. Therefore, CDPF was a potential material to apply for lead removal in industrial applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference69 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3