Cationic oxides and dioxides of modified sugarcane bagasse beads with applications as low-cost sorbents for direct red 28 dye

Author:

Praipipat Pornsawai,Ngamsurach Pimploy,Libsittikul Nantikorn,Kaewpetch Chawanluk,Butdeesak Punpruksa,Nachaiperm Wachira

Abstract

AbstractThe direct red 28 (DR28) dye contamination in wastewater blocks the transmission of light into the water body resulting in the inability to photosynthesize by aquatic life. In addition, it is difficult to break down and persist in the environment, and it is also harmful to aquatic life and water quality because of its aromatic structure. Thus, wastewater contaminated with dyes is required to treat before releasing into the water body. Sugarcane bagasse beads (SBB), sugarcane bagasse modified with titanium dioxide beads (SBBT), sugarcane bagasse modified with magnesium oxide beads (SBBM), sugarcane bagasse modified with aluminum oxide beads (SBBA), and sugarcane bagasse modified with zinc oxide beads (SBBZ) for DR28 dye removal in aqueous solution, and they were characterized with several techniques of BET, FESEM-FIB, EDX, FT-IR, and the point of zero charges (pHpzc). Their DR28 dye removal efficiencies were examined through batch tests, adsorption isotherms, and kinetics. SBBM had the highest specific surface area and pore volume, whereas its pore size was the smallest among other materials. The surfaces of SBB, SBBM, SBBT, and SBBA were scaly sheet surfaces with an irregular shape, whereas SBBZ was a coarse surface. Oxygen, carbon, calcium, chloride, sodium, O–H, C–H, C=O, C=C, and C–O–C were found in all materials. The pHpzc of SBB, SBBT, SBBM, SBBA, and SBBZ were 6.57, 7.31, 10.11, 7.25, and 7.77. All materials could adsorb DR28 dye at 50 mg/L by more than 81%, and SBBM had the highest DR28 dye removal efficiency of 94.27%. Langmuir model was an appropriate model for SBB, whereas Freundlich model was a suitable model for other materials. A pseudo-second-order kinetic model well described their adsorption mechanisms. Their adsorptions of the DR28 dye were endothermic and spontaneous. Therefore, they were potential materials for adsorbing DR28 dye, especially SBBM.

Funder

Office of the Higher Education Commission

Thailand Research Fund

Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS) and National Science and Technology Development Agency

Research and Technology Transfer Affairs of Khon Kaen University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3