Identifying progressive CKD from healthy population using Bayesian network and artificial intelligence: A worksite-based cohort study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-019-41663-7.pdf
Reference19 articles.
1. Nephrology, J. S. o. Evidence-based Clinical Practice Guideline for CKD 2013 346–423 (2014).
2. Masakane, I. et al. Annual Dialysis Data Report 2015, JSDT Renal Data Registry. Renal Replacement Therapy 4, 1–99 (2018).
3. Inaguma, D. et al. Risk factors for CKD progression in Japanese patients: findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study. Clin Exp Nephrol 21, 446–456, https://doi.org/10.1007/s10157-016-1309-1 (2017).
4. Nakayama, M. et al. Increased risk of cardiovascular events and mortality among non-diabetic chronic kidney disease patients with hypertensive nephropathy: the Gonryo study. Hypertens Res 34, 1106–1110, https://doi.org/10.1038/hr.2011.96 (2011).
5. Qaseem, A. et al. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: A clinical practice guideline from the American College of Physicians. Ann Intern Med 159, 835–847, https://doi.org/10.7326/0003-4819-159-12-201312170-00726 (2013).
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches;Cureus;2024-05-12
2. Specific patterns and potential risk factors to predict 3-year risk of death among non-cancer patients with advanced chronic kidney disease by machine learning;Medicine;2024-02-16
3. Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms;BioData Mining;2023-03-10
4. Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review;Journal of Nephrology;2023-02-14
5. Machine-learning-based Web system for the prediction of chronic kidney disease progression and mortality;PLOS Digital Health;2023-01-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3