Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms

Author:

Ou Shuo-Ming,Tsai Ming-Tsun,Lee Kuo-Hua,Tseng Wei-Cheng,Yang Chih-Yu,Chen Tz-Heng,Bin Pin-Jie,Chen Tzeng-Ji,Lin Yao-Ping,Sheu Wayne Huey-Herng,Chu Yuan-Chia,Tarng Der-Cherng

Abstract

Abstract Objectives Type 2 diabetes mellitus (T2DM) imposes a great burden on healthcare systems, and these patients experience higher long-term risks for developing end-stage renal disease (ESRD). Managing diabetic nephropathy becomes more challenging when kidney function starts declining. Therefore, developing predictive models for the risk of developing ESRD in newly diagnosed T2DM patients may be helpful in clinical settings. Methods We established machine learning models constructed from a subset of clinical features collected from 53,477 newly diagnosed T2DM patients from January 2008 to December 2018 and then selected the best model. The cohort was divided, with 70% and 30% of patients randomly assigned to the training and testing sets, respectively. Results The discriminative ability of our machine learning models, including logistic regression, extra tree classifier, random forest, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine were evaluated across the cohort. XGBoost yielded the highest area under the receiver operating characteristic curve (AUC) of 0.953, followed by extra tree and GBDT, with AUC values of 0.952 and 0.938 on the testing dataset. The SHapley Additive explanation summary plot in the XGBoost model illustrated that the top five important features included baseline serum creatinine, mean serum creatine within 1 year before the diagnosis of T2DM, high-sensitivity C-reactive protein, spot urine protein-to-creatinine ratio and female gender. Conclusions Because our machine learning prediction models were based on routinely collected clinical features, they can be used as risk assessment tools for developing ESRD. By identifying high-risk patients, intervention strategies may be provided at an early stage.

Funder

Ministry of Science and Technology, Taiwan

Taipei Veterans General Hospital

Taipei Veterans General Hospital-National Yang-Ming University Excellent Physician Scientists Cultivation Program

Taipei, Taichung, Kaohsiung Veterans General Hospital, Tri-Service General Hospital, Academia Sinica Joint Research Program

Foundation for Poison Control

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3