Author:
Gloerfelt-Tarp Francine,Hewavitharana Amitha K.,Mieog Jos,Palmer William M.,Fraser Felicity,Ansari Omid,Kretzschmar Tobias
Abstract
AbstractC. sativa has gained renewed interest as a cash crop for food, fibre and medicinal markets. Irrespective of the final product, rigorous quantitative testing for cannabinoids, the regulated biologically active constituents of C. sativa, is a legal prerequisite across the supply chains. Currently, the medicinal cannabis and industrial hemp industries depend on costly chromatographic analysis for cannabinoid quantification, limiting production, research and development. Combined with chemometrics, Near-InfraRed spectroscopy (NIRS) has potential as a rapid, accurate and economical alternative method for cannabinoid analysis. Using chromatographic data on 12 therapeutically relevant cannabinoids together with spectral output from a diffuse reflectance NIRS device, predictive chemometric models were built for major and minor cannabinoids using dried, homogenised C. sativa inflorescences from a diverse panel of 84 accessions. Coefficients of determination (r2) of the validation models for 10 of the 12 cannabinoids ranged from 0.8 to 0.95, with models for major cannabinoids showing best performance. NIRS was able to discriminate between neutral and acidic forms of cannabinoids as well as between C3-alkyl and C5-alkyl cannabinoids. The results show that NIRS, when used in conjunction with chemometrics, is a promising method to quantify cannabinoids in raw materials with good predictive results.
Funder
Southern Cross University
Ecofibre Ltd
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Zhang, Q. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front. Plant Sci. 871, 1–13 (2018).
2. Small, E. & Cronquist, A. A practical and natural taxonomy for cannabis. Taxon 25, 405–435 (1976).
3. Hazekamp, A., Tejkalová, K. & Papadimitriou, S. Cannabis: From cultivar to chemovar II—A metabolomics approach to cannabis classification. Cannabis Cannabinoid Res. 1, 202–215 (2016).
4. McPartland, J. M. Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res. 3, 203–212 (2018).
5. Pertwee, R. G. Cannabinoid pharmacology: The first 66 years. Br. J. Pharmacol. https://doi.org/10.1038/sj.bjp.0706406 (2006).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献