Non-Destructive Near-Infrared Technology for Efficient Cannabinoid Analysis in Cannabis Inflorescences

Author:

Rafiq Hamza1ORCID,Hartung Jens2,Schober Torsten1,Vogt Maximilian M.3,Carrera Dániel Árpád3,Ruckle Michael3,Graeff-Hönninger Simone1

Affiliation:

1. Department of Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany

2. Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany

3. Puregene AG, 4314 Zeiningen, Switzerland

Abstract

In the evolving field of cannabis research, scholars are exploring innovative methods to quantify cannabinoids rapidly and non-destructively. This study evaluates the effectiveness of a hand-held near-infrared (NIR) device for quantifying total cannabidiol (total CBD), total delta-9-tetrahydrocannabinol (total THC), and total cannabigerol (total CBG) in whole cannabis inflorescences. Employing pre-processing techniques, including standard normal variate (SNV) and Savitzky–Golay (SG) smoothing, we aim to optimize the portable NIR technology for rapid and non-destructive cannabinoid analysis. A partial least-squares regression (PLSR) model was utilized to predict cannabinoid concentration based on NIR spectra. The results indicated that SNV pre-processing exhibited superior performance in predicting total CBD concentration, yielding the lowest root mean square error of prediction (RMSEP) of 2.228 and the highest coefficient of determination for prediction (R2P) of 0.792. The ratio of performance to deviation (RPD) for total CBD was highest (2.195) with SNV. In contrast, raw data exhibited the least accurate predictions for total THC, with an R2P of 0.812, an RPD of 2.306, and an RMSEP of 1.651. Notably, total CBG prediction showed unique characteristics, with raw data yielding the highest R2P of 0.806. SNV pre-processing emerges as a robust method for precise total CBD quantification, offering valuable insights into the optimization of a hand-held NIR device for the rapid and non-destructive analysis of cannabinoid in whole inflorescence samples. These findings contribute to ongoing efforts in developing portable and efficient technologies for cannabinoid analysis, addressing the increasing demand for quick and accurate assessment methods in cannabis cultivation, pharmaceuticals, and regulatory compliance.

Funder

German Federal Ministry for Economic Affairs and Climate Action within the Central Innovation Program for SMEs

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3