Enhanced chimp optimization algorithm for high level synthesis of digital filters

Author:

Kaur Mandeep,Kaur Ranjit,Singh Narinder

Abstract

AbstractThe HLS of digital filters is a complex optimization task in electronic design automation that increases the level of abstraction for designing and scheming digital circuits. The complexity of this issue attracting the interest of the researcher and solution of this issue is a big challenge for the researcher. The scientists are trying to present the various most powerful methods for this issue, but keep in mind these methods could be trapped in the complex space of this problem due to own weaknesses. Due to shortcomings of these methods, we are trying to design a new framework with the mixture of the phases of the powerful approaches for high level synthesis of digital filters in this work. This modification has been done by merging the chimp optimizer with sine cosine functions. The sine cosine phases helped in enhancing the exploitation phase of the chimp optimizer and also ignored the local optima in the search area during the searching of new shortest paths. The algorithms have been applied on 23-standard test suites and 14-digital filters for verifying the performance of the algorithms. Experimental results of single and multi-objective functions have been compared in terms of best score, best maxima, average, standard deviation, execution time, occupied area and speed respectively. Furthermore, by analyzing the effectiveness of the proposed algorithm with the recent algorithms for the HLS digital filters design, this can be concluded that the proposed method dominates the other two methods in HLS digital filters design. Another prominent feature of the proposed system in addition to the stated enhancement, is its rapid runtime, lowest delay, occupied area and lowest power in achieving an appropriate response. This could greatly reduce the cost of systems with broad dimensions while increasing the design speed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3