Using machine learning to understand the implications of meteorological conditions for fish kills

Author:

Chen You-Jia,Nicholson EmilyORCID,Cheng Su-TingORCID

Abstract

AbstractFish kills, often caused by low levels of dissolved oxygen (DO), involve with complex interactions and dynamics in the environment. In many places the precise cause of massive fish kills remains uncertain due to a lack of continuous water quality monitoring. In this study, we tested if meteorological conditions could act as a proxy for low levels of DO by relating readily available meteorological data to fish kills of grey mullet (Mugil cephalus) using a machine learning technique, the self-organizing map (SOM). Driven by different meteorological patterns, fish kills were classified into summer and non-summer types by the SOM. Summer fish kills were associated with extended periods of lower air pressure and higher temperature, and concentrated storm events 2–3 days before the fish kills. In contrast, non-summer fish kills followed a combination of relatively low air pressure, continuous lower wind speed, and successive storm events 5 days before the fish kills. Our findings suggest that abnormal meteorological conditions can serve as warning signals for managers to avoid fish kills by taking preventative actions. While not replacing water monitoring programs, meteorological data can support fishery management to safeguard the health of the riverine ecosystems.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3