The Gulf of Mexico in trouble: Big data solutions to climate change science

Author:

Sunkara Vishwamithra,McKenna Jason,Kar Soumyashree,Iliev Iliyan,Bernstein Diana N.

Abstract

The latest technological advancements in the development and production of sensors have led to their increased usage in marine science, thus expanding data volume and rates within the field. The extensive data collection efforts to monitor and maintain the health of marine environments supports the efforts in data driven learning, which can help policy makers in making effective decisions. Machine learning techniques show a lot of promise for improving the quality and scope of marine research by detecting implicit patterns and hidden trends, especially in big datasets that are difficult to analyze with traditional methods. Machine learning is extensively used on marine science data collected in various regions, but it has not been applied in a significant way to data generated in the Gulf of Mexico (GOM). Machine learning methods using ocean science data are showing encouraging results and thus are drawing interest from data science researchers and marine scientists to further the research. The purpose of this paper is to review the existing approaches in studying GOM data, the state of the art in machine learning techniques as applied to the GOM, and propose solutions to GOM data problems. We review several issues faced by marine environments in GOM in addition to climate change and its effects. We also present machine learning techniques and methods used elsewhere to address similar problems and propose applications to problems in the GOM. We find that Harmful Algal Blooms (HABs), hypoxia, and sea-level rises have not received as much attention as other climate change problems and within the machine learning literature, the impacts on estuaries and coastal systems, as well as oyster mortality (also major problems for the GOM) have been understudied – we identify those as important areas for improvement. We anticipate this manuscript will act as a baseline for data science researchers and marine scientists to solve problems in the GOM collaboratively and/or independently.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3