Forecasting Vertical Profiles of Ocean Currents from Surface Characteristics: A Multivariate Multi-Head Convolutional Neural Network–Long Short-Term Memory Approach

Author:

Kar Soumyashree1ORCID,McKenna Jason R.1ORCID,Anglada Glenn1,Sunkara Vishwamithra1,Coniglione Robert1,Stanic Steve1,Bernard Landry1

Affiliation:

1. Roger F. Wicker Center for Ocean Enterprise, The University of Southern Mississippi, Gulfport, MS 39501, USA

Abstract

While study of ocean dynamics usually involves modeling deep ocean variables, monitoring and accurate forecasting of nearshore environments is also critical. However, sensor observations often contain artifacts like long stretches of missing data and noise, typically after an extreme event occurrence or some accidental damage to the sensors. Such data artifacts, if not handled diligently prior to modeling, can significantly impact the reliability of any further predictive analysis. Therefore, we present a framework that integrates data reconstruction of key sea state variables and multi-step-ahead forecasting of current speed from the reconstructed time series for 19 depth levels simultaneously. Using multivariate chained regressions, the reconstruction algorithm rigorously tests from an ensemble of tree-based models (fed only with surface characteristics) to impute gaps in the vertical profiles of the sea state variables down to 20 m deep. Subsequently, a deep encoder–decoder model, comprising multi-head convolutional networks, extracts high-level features from each depth level’s multivariate (reconstructed) input and feeds them to a deep long short-term memory network for 24 h ahead forecasts of current speed profiles. In this work, we utilized Viking buoy data, and demonstrated that with limited training data, we could explain an overall 80% variation in the current speed profiles across the forecast period and the depth levels.

Funder

The Roger F. Wicker Center for Ocean Enterprise

The University of Southern Mississippi, USA

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3