Author:
Sharma Nikhil,Whittaker Alexander C.,Watkins Stephen E.,Valero Luis,Vérité Jean,Puigdefabregas Cai,Adatte Thierry,Garcés Miguel,Guillocheau François,Castelltort Sébastien
Abstract
AbstractAncient fluvial deposits typically display repetitive changes in their depositional architecture such as alternating intervals of coarse-grained highly amalgamated (HA), laterally-stacked, channel bodies, and finer-grained less amalgamated (LA), vertically-stacked, channels encased in floodplain deposits. Such patterns are usually ascribed to slower, respectively higher, rates of base level rise (accommodation). However, “upstream” factors such as water discharge and sediment flux also play a potential role in determining stratigraphic architecture, yet this possibility has never been tested despite the recent advances in the field of palaeohydraulic reconstructions from fluvial accumulations. Here, we chronicle riverbed gradient evolution within three Middle Eocene (~ 40 Ma) fluvial HA-LA sequences in the Escanilla Formation in the south-Pyrenean foreland basin. This work documents, for the first time in a fossil fluvial system, how the ancient riverbed systematically evolved from lower slopes in coarser-grained HA intervals, and higher slopes in finer-grained LA intervals, suggesting that bed slope changes were determined primarily by climate-controlled water discharge variations rather than base level changes as often hypothesized. This highlights the important connection between climate and landscape evolution and has fundamental implications for our ability to reconstruct ancient hydroclimates from the interpretation of fluvial sedimentary sequences.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献