The Fate of Bars in Braided Rivers

Author:

Alpheus Safiya1,Hajek Elizabeth1

Affiliation:

1. Pennsylvania State University

Abstract

Ancient river deposits are important archives of past landscape conditions on planetary surfaces. On Earth, they host valuable groundwater, energy resources, and carbon-storage potential. Reconstructing details of paleochannel forms and movements refines our understanding of the controls on river behavior under different climate, landcover, and tectonic conditions, and improves predictions and models of subsurface reservoirs. While studies have shown detailed connections between channel kinematics and bar-deposit architecture in meandering river systems, similar connections between braided river movements and preserved braided river deposits have not been established. Here we explore the potential for connecting braided river deposits to paleochannel movements, form, and flow conditions, and we evaluate the controls on bar preservation using synthetic stratigraphy generated with a numerical morphodynamic model. We investigate how attributes of channel morphodynamics, like channel widening or braiding intensity, impact bar deposits’ preservation, scale, geometry, and architecture. We then assess how the scale, preservation, and facies composition of bar deposits reflect formative flow conditions of the channel. Our results demonstrate that no diagnostic signature of braided channel morphodynamics is recorded in bar-deposit geometry, facies, or preservation patterns. Rather, the unique local history of thread movements combines stochastically to preserve or rework bar deposits, and the timing of channel avulsion is the dominant control on bar preservation. Our results also show that representative paleochannel flow conditions will likely be accurately reflected in aggregate observations of braid bar deposits within channel-belt sandbodies at a regional or member/formation scale. These results demonstrate the need for broad sampling and statistical approaches to subsurface prediction and paleo-flow reconstruction in ancient, braided river deposits.

Publisher

Society for Sedimentary Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3