Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides

Author:

Jeong Eun-Suk,Hwang In-Hui,Han Sang-Wook

Abstract

AbstractThe heterogeneous catalysts of Pt/transition-metal oxides are typically synthesized through calcination at 500 °C, and Pt nanoparticles are uniformly and highly dispersed when hydrogen peroxide (H2O2) is applied before calcination. The influence of H2O2 on the dispersion and the stability of Pt nanoparticles on titania-incorporated fumed silica (Pt/Ti–FS) supports was examined using X-ray absorption fine structure (XAFS) measurements at the Pt L3 and Ti K edges as well as density functional theory (DFT) calculations. The local structural and chemical properties around Pt and Ti atoms of Pt/Ti–FS with and without H2O2 treatment were monitored using in-situ XAFS during heating from room temperature to 500 °C. XAFS revealed that the Pt nanoparticles of H2O2-Pt/Ti–FS are highly stable and that the Ti atoms of H2O2-Pt/Ti–FS support form into a distorted-anatase TiO2. DFT calculations showed that Pt atoms bond more stably to oxidized–TiO2 surfaces than they do to bare- and reduced–TiO2 surfaces. XAFS measurements and DFT calculations clarified that the presence of extra oxygen atoms due to the H2O2 treatment plays a critical role in the strong bonding of Pt atoms to TiO2 surfaces.

Funder

National Research Foundation of Korea government grant funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3