Enhanced Durability and Catalytic Performance of Pt–SnO2/Multi‐Walled Carbon Nanotube with Shifted d‐Band Center for Proton‐Exchange Membrane Fuel Cells

Author:

Min Hyeongwoo1,Choi Ji-Hyeok1ORCID,Kang Ha Eun1,Kim Dong-Joo2,Yoon Young Soo1ORCID

Affiliation:

1. Department of Materials Science and Engineering Gachon University Seongnam Gyeonggi-do 13120 Republic of Korea

2. Materials Research and Education Center Auburn University 275 Wilmore Labs Auburn AL 36849 USA

Abstract

Worldwide, significant efforts are made to identify energy sources that can help achieve carbon neutrality and promote sustainable development. The development of a catalyst that combines durability and high performance is essential for the commercialization of proton‐exchange membrane fuel cells (PEMFCs). In a fuel cell, carbon corrosion occurs during startup and shutdown due to improper local flooding caused by inadequate water management. In this study, a Pt‐based catalyst is designed with excellent durability and high activity. Introducing a metal oxide layer modified with Pt/multi‐walled carbon nanotubes reduces the direct contact between carbon and the fuel cell environment. This helps prevent carbon corrosion and inhibits the separation, aggregation, and growth of Pt nanoparticles. Moreover, the catalyst exhibits enhanced oxygen reduction activity due to the electronic effect of the metal oxide layer that is coated on it. In this study, by implementing a carbon erosion acceleration protocol, excellent catalytic properties during a load‐cycling experiment consisting of 5,000 cycles are reported. The practical application of the developed catalyst in PEMFCs offers an effective approach to developing Pt‐group metal catalysts with exceptional activity.

Funder

Korea Electric Power Corporation

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3