Multi-step ahead thermal warning network for energy storage system based on the core temperature detection

Author:

Li Marui,Dong Chaoyu,Yu Xiaodan,Xiao Qian,Jia Hongjie

Abstract

AbstractThe energy storage system is an important part of the energy system. Lithium-ion batteries have been widely used in energy storage systems because of their high energy density and long life. However, the temperature is still the key factor hindering the further development of lithium-ion battery energy storage systems. Both low temperature and high temperature will reduce the life and safety of lithium-ion batteries. In actual operation, the core temperature and the surface temperature of the lithium-ion battery energy storage system may have a large temperature difference. However, only the surface temperature of the lithium-ion battery energy storage system can be easily measured. The estimation method of the core temperature, which can better reflect the operation condition of the lithium-ion battery energy storage system, has not been commercialized. To secure the thermal safety of the energy storage system, a multi-step ahead thermal warning network for the energy storage system based on the core temperature detection is developed in this paper. The thermal warning network utilizes the measurement difference and an integrated long and short-term memory network to process the input time series. This thermal early warning network takes the core temperature of the energy storage system as the judgment criterion of early warning and can provide a warning signal in multi-step in advance. This detection network can use real-time measurement to predict whether the core temperature of the lithium-ion battery energy storage system will reach a critical value in the following time window. And the output of the established warning network model directly determines whether or not an early emergency signal should be sent out. In the end, the accuracy and effectiveness of the model are verified by numerous testing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3