Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization

Author:

Tian Luyu1ORCID,Dong Chaoyu2,Wang Rui3ORCID,Mu Yunfei1ORCID,Jia Hongjie1

Affiliation:

1. School of Electrical and Information Engineering Tianjin University Tianjin China

2. Nanyang Technological University Singapore Singapore

3. College of Information Science and Engineering Northeastern University Shenyang China

Abstract

AbstractLithium‐ion batteries are widely employed in electric vehicles, power grid energy storage, and other fields. Thermal fault diagnostics for battery packs is crucial to preventing thermal runaway from impairing the safe operation and extended cycle service life of batteries. Therefore, a lithium‐ion battery thermal fault diagnosis model based on deep learning algorithms is presented, which includes three parts: autoencoder denoising network, coarse mask generator, and mask precise adjustment. Autoencoder denoising network can reduce data noise during thermal imaging acquisition, improve the anti‐interference ability of diagnostic models, and ensure the accuracy of thermal runaway diagnosis. A two‐stage diagnostic structure is then formulated by the coarse mask generator and mask precise adjustment, which enable quick identification, categorisation, and localisation of thermal fault battery cells. According to the test results, the segmentation boundary is more distinct and is capable of matching the original image's level. The recognition accuracy of the thermal diagnosis model for faulty batteries is close to 100%. After denoising by the autoencoder, the prediction results improved by 22% compared to non‐local mean denoising and by about 32% compared to noisy images.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3