A new magnetic melt spinning device for patterned nanofiber

Author:

Zhang Kai,Zhao Wu,Liu Qingjie,Yu Miao

Abstract

AbstractThe size and morphology of nanofibers directly determine their application scope and performance, while regular patterned fibers further demonstrate their superior performance in the field of sensors and biomaterials. Melt electrospinning enables controlled deposition of fibers and is currently one of the most important means of preparing patterned fibers. However, due to the existence of high-voltage electric field, melt electrospinning has safety problems such as partial discharge and electric field breakdown, coupled with the charge rejection on the fiber surface, which seriously affects the positioning deposition of fibers and makes it difficult to obtain regular patterned fibers, greatly limiting the application areas and application effects of patterned fibers. Therefore, the improvement and innovation of the spinning process is particularly urgent. Based on material-field model and contradiction matrix of TRIZ theory, the problems of melt electrospinning device are systematically analyzed. The technical conflicts are solved by the inventive principles. A three-dimensional mobile magnetic melt spinning device model is constructed, a magnetic spinning test prototype is developed, and the prototype performance and influencing factors are studied by fiber morphology. The results show the following: (1) Replacing electrostatic fields with permanent magnetic fields can fundamentally avoid safety hazards such as electric field breakdown. (2) The magnetic field force on the molten polymer fluid can generate enough stretching force to overcome the surface tension and form fibers. (3) The fibers are deposited without a whipping instability phase similar to the electrospinning process, allowing easy preparation of regular patterned fibers. (4) The planar motion of the collector creates additional stretching effect on the fibers, which can further reduce the fiber diameter. (5) In magnetic spinning, no external high-voltage power supply is required, enabling the portability of the device. The results of this paper can provide a new method for preparing nanofibers with patterned morphology.

Funder

Science & Technology Ministry Innovation Method Program, China

Sichuan Major Science and Technology Project, China

Sichuan Province Science Technology Support Program, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3