Predicting the thermal distribution in a convective wavy fin using a novel training physics-informed neural network method

Author:

Chandan K.,Saadeh Rania,Qazza Ahmad,Karthik K.,Varun Kumar R. S.,Kumar R. Naveen,Khan Umair,Masmoudi Atef,Abdou M. Modather M.,Ojok Walter,Kumar Raman

Abstract

AbstractFins are widely used in many industrial applications, including heat exchangers. They benefit from a relatively economical design cost, are lightweight, and are quite miniature. Thus, this study investigates the influence of a wavy fin structure subjected to convective effects with internal heat generation. The thermal distribution, considered a steady condition in one dimension, is described by a unique implementation of a physics-informed neural network (PINN) as part of machine-learning intelligent strategies for analyzing heat transfer in a convective wavy fin. This novel research explores the use of PINNs to examine the effect of the nonlinearity of temperature equation and boundary conditions by altering the hyperparameters of the architecture. The non-linear ordinary differential equation (ODE) involved with heat transfer is reduced into a dimensionless form utilizing the non-dimensional variables to simplify the problem. Furthermore, Runge–Kutta Fehlberg’s fourth–fifth order (RKF-45) approach is implemented to evaluate the simplified equations numerically. To predict the wavy fin's heat transfer properties, an advanced neural network model is created without using a traditional data-driven approach, the ability to solve ODEs explicitly by incorporating a mean squared error-based loss function. The obtained results divulge that an increase in the thermal conductivity variable upsurges the thermal distribution. In contrast, a decrease in temperature profile is caused due to the augmentation in the convective-conductive variable values.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Springer Science and Business Media LLC

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3