Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects

Author:

N.S. Shashikumar,B.J. Gireesha,Mahanthesh B.ORCID,B.C. Prasannakumara

Abstract

Purpose The microfluidics has a wide range of applications, such as micro heat exchanger, micropumps, micromixers, cooling systems for microelectronic devices, fuel cells and microturbines. However, the enhancement of thermal energy is one of the challenges in these applications. Therefore, the purpose of this paper is to enhance heat transfer in a microchannel flow by utilizing carbon nanotubes (CNTs). MHD Brinkman-Forchheimer flow in a planar microchannel with multiple slips is considered. Aspects of viscous and Joule heating are also deployed. The consequences are presented in two different carbon nanofluids. Design/methodology/approach The governing equations are modeled with the help of conservation equations of flow and energy under the steady-state situation. The governing equations are non-dimensionalized through dimensionless variables. The dimensionless expressions are treated via Runge-Kutta-Fehlberg-based shooting scheme. Pertinent results of velocity, skin friction coefficient, temperature and Nusselt number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Numerical results agree perfectly with the analytical results. Findings It is established that multiple slip effect is favorable for velocity and temperature fields. The velocity field of multi-walled carbon nanotubes (MWCNTs) nanofluid is lower than single-walled carbon nanotubes (SWCNTs)-nanofluid, while thermal field, Nusselt number and drag force are higher in the case of MWCNT-nanofluid than SWCNT-nanofluid. The impact of nanotubes (SWCNTs and MWCNTs) is constructive for thermal boundary layer growth. Practical implications This study may provide useful information to improve the thermal management of microelectromechanical systems. Originality/value The effects of CNTs in microchannel flow by utilizing viscous dissipation and Joule heating are first time investigated. The results for SWCNTs and MWCNTs have been compared.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference39 articles.

1. Forced convection boundary layer stagnation-point flow in Darcy-Forchheimer porous medium past a shrinking sheet;Frontiers Heat Mass Transfer,2016

2. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids);International Journal of Heat and Mass Transfer,2006

3. Wasserbewegung durch boden;Zeitschrift des Vereines deutscher Ingenieure,1901

4. Transient velocity and steady state entropy generation in a microfluidic couette flow containing charged nano particles;International Journal of Applied Mechanics and Engineering,2015

5. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface;Physica E: Low-Dimensional Systems and Nanostructures,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3