Author:
Selvadurai A. P. S.,Suvorov A. P.
Abstract
Abstract
Fluid-saturated rocks are multi-phasic materials and the mechanics of partitioning the externally applied stresses between the porous skeleton of the rock and the interstitial fluids has to take into consideration the mechanical behaviour of the phases. In these studies the porosity of the multi-phasic material is important for estimating the multi-phasic properties and most studies treat the porosity as a scalar measure without addressing the influence of pore shape and pore geometry. This paper shows that both the overall bulk modulus of a porous medium and the Biot coefficient depend on the shape of the pores. Pores with shapes resembling either thin oblate spheroids or spheres are considered. The Mori–Tanaka and the self-consistent methods are used to estimate the overall properties and the results are compared with experimental data. The pore density and the aspect ratio of the spheroidal pores influence the porosity of the geomaterials. For partially saturated rocks, the equivalent bulk modulus of the fluid–gas mixture occupying the pore space can also be obtained. The paper also examines the influence of the pore shape in estimating the Biot coefficient that controls the stress partitioning in fluid-saturated poroelastic materials.
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献