Non-contact heart vibration measurement using computer vision-based seismocardiography

Author:

Rahman Mohammad Muntasir,Cook Jadyn,Taebi Amirtahà

Abstract

AbstractSeismocardiography (SCG) is the noninvasive measurement of local vibrations of the chest wall produced by the mechanical activity of the heart and has shown promise in providing clinical information for certain cardiovascular diseases including heart failure and ischemia. Conventionally, SCG signals are recorded by placing an accelerometer on the chest. In this paper, we propose a novel contactless SCG measurement method to extract them from chest videos recorded by a smartphone. Our pipeline consists of computer vision methods including the Lucas–Kanade template tracking to track an artificial target attached to the chest, and then estimate the SCG signals from the tracked displacements. We evaluated our pipeline on 14 healthy subjects by comparing the vision-based SCG$$^\mathrm{{v}}$$ v estimations with the gold-standard SCG$$^\mathrm{{g}}$$ g measured simultaneously using accelerometers attached to the chest. The similarity between SCG$$^\mathrm{{g}}$$ g and SCG$$^\mathrm{{v}}$$ v was measured in the time and frequency domains using the Pearson correlation coefficient, a similarity index based on dynamic time warping (DTW), and wavelet coherence. The average DTW-based similarity index between the signals was 0.94 and 0.95 in the right-to-left and head-to-foot directions, respectively. Furthermore, SCG$$^\mathrm{{v}}$$ v signals were utilized to estimate the heart rate, and these results were compared to the gold-standard heart rate obtained from ECG signals. The findings indicated a good agreement between the estimated heart rate values and the gold-standard measurements (bias = 0.649 beats/min). In conclusion, this work shows promise in developing a low-cost and widely available method for remote monitoring of cardiovascular activity using smartphone videos.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3