Unconditional and conditional analysis of epistasis between tillering QTLs based on single segment substitution lines in rice

Author:

Zhou Huaqian,Yang Weifeng,Ma Shuaipeng,Luan Xin,Zhu Haitao,Wang Aimin,Huang Congling,Rong Biao,Dong Shangzhi,Meng Lijun,Wang Shaokui,Zhang Guiquan,Liu Guifu

Abstract

AbstractEpistasis plays an important role in manipulating rice tiller number, but epistatic mechanism still remains a challenge. Here we showed the process of epistatic analysis between tillering QTLs. A half diallel mating scheme was conducted based on 6 single segment substitution lines and 9 dual segment pyramiding lines to allow the analysis of 4 epistatic components. Additive-additive, additive-dominance, dominance-additive, and dominance-dominance epistatic effects were estimated at 9 stages of development via unconditional QTL analysis simultaneously. Unconditional QTL effect (QTL cumulative effect before a certain stage) was then divided into several conditional QTL components (QTL net effect in a certain time interval). The results indicated that epistatic interaction was prevalent, all QTL pairs harboring epistasis and one QTL always interacting with other QTLs in various component ways. Epistatic effects were dynamic, occurring mostly within 14d and 21–35d after transplant and exhibited mainly negative effects. The genetic and developmental mechanism on several tillering QTLs was further realized and perhaps was useful for molecular pyramiding breeding and heterosis utilization for improving plant architecture.

Funder

Research and Development Program in Key Areas of Guangdong Province, China

The National Key Research and Development Program of China

Special Project for Leading Talents in Innovation of Science and Technology of Guangdong Province, China

Guangzhou Science and Technology Planning Project Foundation, China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3