Fine Mapping of Two Major Quantitative Trait Loci for Rice Chalkiness With High Temperature-Enhanced Additive Effects

Author:

Yang Weifeng,Hao Qingwen,Liang Jiayan,Tan Quanya,Luan Xin,Lin Shaojun,Zhu Haitao,Bu Suhong,Liu Zupei,Liu Guifu,Wang Shaokui,Zhang Guiquan

Abstract

Chalkiness is a crucial determinant of rice quality. During seed filling period, high temperature usually increases grain chalkiness, resulting in poor grain quality. Rice chalkiness was controlled by quantitative trait loci (QTLs) and influenced by environmental conditions. In this study, we identified two single-segment substitution lines (SSSLs) 22–05 and 15–06 with significantly lower percentage of grain chalkiness (PGC) than recipient Huajingxian 74 (HJX74) over 6 cropping seasons. Two major QTLs for chalkiness, qPGC5 and qPGC6, were located by substitution mapping of SSSLs 22–05 and 15–06, respectively. qPGC5 was located in the 876.5 kb interval of chromosome 5 and qPGC6 was located in the 269.1 kb interval of chromosome 6. Interestingly, the PGC of HJX74 was significantly different between the two cropping seasons per year, with 25.8% in the first cropping season (FCS) and 16.6% in the second cropping season (SCS), while the PGC of SSSLs 22–05 and 15–06 did not significantly differ between FCS and SCS. The additive effects of qPGC5 and qPGC6 on chalkiness in the SSSLs were significantly greater in FCS than in SCS. These results showed that qPGC5 and qPGC6 had major effects on chalkiness and the SSSL alleles were more effective in reducing chalkiness under high temperature condition in FCS. The fine-mapping of the two QTLs will facilitate the cloning of genes for chalkiness and provide new genetic resources to develop new cultivars with low chalkiness even under high temperature condition.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3