Continuous-time quantum walk based centrality testing on weighted graphs

Author:

Wang Yang,Xue Shichuan,Wu Junjie,Xu Ping

Abstract

AbstractCentrality measure is an essential tool in network analysis and widely used in the domain of computer science, biology and sociology. Taking advantage of the speedup offered by quantum computation, various quantum centrality measures have been proposed. However, few work of quantum centrality involves weighted graphs, while the weight of edges should be considered in certain real-world networks. In this work, we extend the centrality measure based on continuous-time quantum walk to weighted graphs. We testify the feasibility and reliability of this quantum centrality using an ensemble of 41,675 graphs with various topologies and comparing with the eigenvector centrality measure. The average Vigna’s correlation index of all the tested graphs with all edge weights in [1, 10] is as high as 0.967, indicating the pretty good consistency of rankings by the continuous-time quantum walk centrality and the eigenvector centrality. The intuitive consistency of the top-ranked vertices given by this quantum centrality measure and classical centrality measures is also demonstrated on large-scale weighted graphs. Moreover, the range of the continuous-time quantum walk centrality values is much bigger than that of classical centralities, which exhibits better distinguishing ability to pick the important vertices from the ones with less importance. All these results show that the centrality measure based on continuous-time quantum walk still works well on weighted graphs.

Funder

National Basic Research Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous-time quantum walks for MAX-CUT are hot;Quantum;2024-02-13

2. QWalkVec: Node Embedding by Quantum Walk;Lecture Notes in Computer Science;2024

3. A Novel Image Segmentation Algorithm based on Continuous-Time Quantum Walk using Superpixels;International Journal of Theoretical Physics;2023-12-30

4. Wide‐Bandgap Perovskite‐Inspired Materials: Defect‐Driven Challenges for High‐Performance Optoelectronics;Advanced Functional Materials;2023-10-02

5. A Graph Isomorphism Algorithm based on Continuous-Time Quantum Walks;2023 2nd International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3