Wide‐Bandgap Perovskite‐Inspired Materials: Defect‐Driven Challenges for High‐Performance Optoelectronics

Author:

Grandhi G. Krishnamurthy1,Hardy David2,Krishnaiah Mokurala3,Vargas Brenda4,Al‐Anesi Basheer1,Suryawanshi Mahesh P.5,Solis‐Ibarra Diego4,Gao Feng2,Hoye Robert L. Z.6,Vivo Paola1ORCID

Affiliation:

1. Hybrid Solar Cells Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 Tampere FI‐33014 Finland

2. Department of Physics Chemistry and Biology (IFM) Linköping University Linköping SE‐58183 Sweden

3. Department of Electronic Engineering Incheon National University Incheon 406‐772 Republic of Korea

4. Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Ciudad de Maáxico Coyoacán 04510 Mexico

5. School of Photovoltaic and Renewable Energy Engineering University of New South Wales Sydney New South Wales 2052 Australia

6. Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK

Abstract

AbstractThe remarkable success of lead halide perovskites (LHPs) in photovoltaics and other optoelectronics is significantly linked to their defect tolerance, although this correlation remains not fully clear. The tendency of LHPs to decompose into toxic lead‐containing compounds in the presence of humid air calls for the need of low‐toxicity LHP alternatives comprising of cations with stable oxidation states. To this aim, a plethora of low‐dimensional and wide‐bandgap perovskite‐inspired materials (PIMs) are proposed. Unfortunately, the optoelectronic performance of PIMs currently lags behind that of their LHP‐based counterparts, with a key limiting factor being the high concentration of defects in PIMs, whose rich and complex chemistry is still inadequately understood. This review discusses the defect chemistry of relevant PIMs belonging to the halide elpasolite, vacancy‐ordered double perovskite, pnictogen‐based metal halide, Ag‐Bi‐I, and metal chalcohalide families of materials. The defect‐driven optical and charge‐carrier transport properties of PIMs and their device performance within and beyond photovoltaics are especially discussed. Finally, a view on potential solutions for advancing the research on wide‐bandgap PIMs is provided. The key insights of this review will help to tackle the commercialization challenges of these emerging semiconductors with low toxicity and intrinsic air stability.

Funder

Väisälän Rahasto

UK Research and Innovation

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Consejo Nacional de Ciencia y Tecnología

Jane ja Aatos Erkon Säätiö

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3