Author:
Rashid Muhammad Irfanur,Ito Takuji,Miya Fuyuki,Shimojo Daisuke,Arimoto Kanae,Onodera Kazunari,Okada Rina,Nagashima Takunori,Yamamoto Kazuki,Khatun Zohora,Shimul Rayhanul Islam,Niwa Jun-ichi,Katsuno Masahisa,Sobue Gen,Okano Hideyuki,Sakurai Hidetoshi,Shimizu Kazunori,Doyu Manabu,Okada Yohei
Abstract
AbstractPathophysiological analysis and drug discovery targeting human diseases require disease models that suitably recapitulate patient pathology. Disease-specific human induced pluripotent stem cells (hiPSCs) differentiated into affected cell types can potentially recapitulate disease pathology more accurately than existing disease models. Such successful modeling of muscular diseases requires efficient differentiation of hiPSCs into skeletal muscles. hiPSCs transduced with doxycycline-inducible MYOD1 (MYOD1-hiPSCs) have been widely used; however, they require time- and labor-consuming clonal selection, and clonal variations must be overcome. Moreover, their functionality should be carefully examined. Here, we demonstrated that bulk MYOD1-hiPSCs established with puromycin selection rather than G418 selection showed rapid and highly efficient differentiation. Interestingly, bulk MYOD1-hiPSCs exhibited average differentiation properties of clonally established MYOD1-hiPSCs, suggesting that it is possible to minimize clonal variations. Moreover, disease-specific hiPSCs of spinal bulbar muscular atrophy (SBMA) could be efficiently differentiated via this method into skeletal muscle that showed disease phenotypes, suggesting the applicability of this method for disease analysis. Finally, three-dimensional muscle tissues were fabricated from bulk MYOD1-hiPSCs, which exhibited contractile force upon electrical stimulation, indicating their functionality. Thus, our bulk differentiation requires less time and labor than existing methods, efficiently generates contractible skeletal muscles, and may facilitate the generation of muscular disease models.
Funder
The Japan SBMA Association
The Hori Sciences and Arts Foundation
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献