Wireless power transfer system for deep-implanted biomedical devices

Author:

Iqbal Amjad,Sura Penchala Reddy,Al-Hasan Muath,Mabrouk Ismail Ben,Denidni Tayeb A.

Abstract

AbstractIn this paper, a dual-band implantable rectenna is proposed for recharging and operating biomedical implantable devices at 0.915 and 2.45 GHz. The rectenna system consists of a compact dual-band antenna based on a meandered-resonator as well as efficient dual-band rectifier circuit. Both components (antenna and rectifier) are integrated inside a capsule device to simulate and experimentally validate the rectenna. The antenna occupies lower volume ($$5 \times 5.25 \times 0.25$$ 5 × 5.25 × 0.25  $$\hbox {mm}^{3}$$ mm 3 ), where compactness is achieved using meandered geometry and a slotted ground plane. It maintains quasi-omnidirectional radiation patterns and peak realized gains of −22.1 dBi (915 MHz) and −19.6 dBi (2.45 GHz); thus, its capability is enhanced to harvest the ambient energy from multiple directions. Moreover, a dual-band rectifier is designed using a dual-branch matching network (an L-matching network and open-circuited stub in each branch) with a radio frequency (RF) to direct current (DC) conversion efficiency of 79.9% for the input power of 1 dBm (lower band: 0.915 GHz) and 72.8% for the input power of 3 dBm (upper band: 2.45 GHz). To validate the concept of the rectenna, the implantable antenna and rectifier are fabricated and attached together inside a capsule device, with the measured results verifying the simulated responses. The proposed rectenna efficiently rectifies two RF signals and effectively superimposes on a single load, thus, providing a distinct advantage compared to single-band rectennas. To the best of the authors’ knowledge, this is the first-ever implantable rectenna to perform dual-band RF signal rectification.

Funder

Department of Education and Knowledge

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3