Rotation insensitive implantable wireless power transfer system for medical devices using metamaterial-polarization converter

Author:

Shaw Tarakeswar,Mandal Bappaditya,Samanta Gopinath,Voigt Thiemo,Mitra Debasis,Augustine Robin

Abstract

AbstractThis article introduces an innovative approach for creating a circular polarization (CP) antenna-based rotation-insensitive implantable wireless power transfer (WPT) system for medical devices. The system is constructed to work in the industrial, scientific, and medical (ISM) frequency band of 902–928 MHz. Initially, a flexible, wide-band, and bio-compatible open-ended CP slot antenna is designed within a single-layer human skin tissue model to serve as the receiving (Rx) element. To form the implantable WPT link, a circular patch antenna is also constructed in the free-space to use as a transmitting (Tx) source. Further, a new metamaterial-polarization converter (MTM-PC) structure is developed and incorporated into the proposed system to enhance the power transfer efficiency (PTE). Furthermore, the rotational phenomenon of the Rx implant has been studied to show how the rotation affects the system’s performance. Moreover, a numerical analysis of the specific absorption rate (SAR) is conducted to confirm compliance with safety regulations and prioritize human safety from electromagnetic exposure. Finally, to validate the introduced concept, prototypes of the different elements of the proposed WPT system were fabricated and tested using skin-mimicking gel and porcine tissue. The measured results confirm the feasibility of the introduced approach, exhibiting improved efficiency due to use of the MTM-PC. The amplitude of the transmission coefficient ($$|S_{21}|$$ | S 21 | ) has improved by 6.94 dB in the simulation, whereas the enhancement of 7.04 dB and 6.76 dB is obtained from the experimental study due to the integration of MTM-PC. As a result, the PTE of the proposed MTM-PC integrated implantable WPT system is increased significantly compared to the system without MTM-PC.

Funder

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Stiftelsen för Strategisk Forskning

Department of Biotechnology, Ministry of Science and Technology, India

VINNOVA

Uppsala University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3