Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys

Author:

Jones Morgan R.,Nation Brendan L.,Wellington-Johnson John A.,Curry John F.,Kustas Andrew B.,Lu Ping,Chandross Michael,Argibay Nicolas

Abstract

AbstractWe present evidence of inverse Hall-Petch behavior for a single-phase high entropy alloy (CoCrFeMnNi) in ultra-high vacuum and show that it is associated with low friction coefficients (~0.3). Grain size measurements by STEM validate a recently proposed dynamic amorphization model that accurately predicts grain size-dependent shear strength in the inverse Hall-Petch regime. Wear rates in the initially soft (coarse grained) material were shown to be remarkably low (~10–6 mm3/N-m), the lowest for any HEA tested in an inert environment where oxidation and the formation of mixed metal-oxide films is mitigated. The combined high wear resistance and low friction are linked to the formation of an ultra-nanocrystalline near-surface layer. The dynamic amorphization model was also used to predict an average high angle grain boundary energy (0.87 J/m2). This value was used to explain cavitation-induced nanoporosity found in the highly deformed surface layer, a phenomenon that has been linked to superplasticity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3