Author:
Armendáriz Inés,Ferrari Pablo A.,Fraiman Daniel,Martínez José M.,Menzella Hugo G.,Ponce Dawson Silvina
Abstract
AbstractThe progress of the SARS-CoV-2 pandemic requires the design of large-scale, cost-effective testing programs. Pooling samples provides a solution if the tests are sensitive enough. In this regard, the use of the gold standard, RT-qPCR, raises some concerns. Recently, droplet digital PCR (ddPCR) was shown to be 10–100 times more sensitive than RT-qPCR, making it more suitable for pooling. Furthermore, ddPCR quantifies the RNA content directly, a feature that, as we show, can be used to identify nonviable samples in pools. Cost-effective strategies require the definition of efficient deconvolution and re-testing procedures. In this paper we analyze the practical implementation of an efficient hierarchical pooling strategy for which we have recently derived the optimal, determining the best ways to proceed when there are impediments for the use of the absolute optimum or when multiple pools are tested simultaneously and there are restrictions on the throughput time. We also show how the ddPCR RNA quantification and the nested nature of the strategy can be combined to perform self-consistency tests for a better identification of infected individuals and nonviable samples. The studies are useful to those considering pool testing for the identification of infected individuals.
Funder
Universidad de Buenos Aires
Fondo para la Investigación Científica y Tecnológica
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献