Optimizing time, cost, and carbon in construction: grasshopper algorithm empowered with tournament selection and opposition-based learning

Author:

Pham Vu Hong Son,Vo Duy Phuoc,Nguyen Dang Nghiep Trinh

Abstract

AbstractThe global construction industry plays a pivotal role, yet its unique characteristics pose distinctive challenges. Each construction project, marked by its individuality, substantial value, intricate scale, and constrained adaptability, confronts crucial limitations concerning time and cost. Despite contributing significantly to environmental concerns throughout construction activities and infrastructure operations, environmental considerations remain insufficiently addressed by project managers. This research introduces an improved rendition of the muti-objective grasshopper optimization algorithm (MOGOA), termed eMOGOA, as a novel methodology to tackle time, cost, and carbon dioxide emission trade-off problems (TCCP) in construction project management. To gauge its efficacy, a case study involving 29 activities is employed. eMOGOA amalgamates MOGOA, tournament selection (TS), and opposition-based learning (OBL) techniques to enhance the performance of the original MOGOA. The outcomes demonstrate that eMOGOA surpasses other optimization algorithms, such as MODA, MOSMA, MOALO and MOGOA when applied to TCCP. These findings underscore the efficiency and relevance of the eMOGOA algorithm within the realm of construction project management.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3