Spatio-temporal analysis of land use land cover change and its impact on land surface temperature of Sialkot City, Pakistan

Author:

Javaid Kainat,Ghafoor Gul ZareenORCID,Sharif Faiza,Shahid Memuna Ghafoor,Shahzad Laila,Ghafoor Naghmana,Hayyat Muhammad Umar,Farhan Muhammad

Abstract

AbstractThe dynamic interplay between urbanization and its impacts on climate is a subject of recent concern, particularly in rapidly urbanizing cities of Pakistan. This research investigated the spatio-temporal effects of urban growth in terms of Land Use Land Cover changes on the thermal environment (Land Surface Temperature) of the Sialkot city, Pakistan using satellite data spanning four distinct time periods (1989, 2000, 2009 and 2020) and predicted changes for year 2030 by employing Cellular Automata Markov Chain Model. Satellite imagery (Landsat 5, 7 and 8) was processed, and maximum likelihood supervised classification was done to generate LULC maps for each of the aforementioned years. In addition to LULC classification, thermal bands of satellite data (for summer and winter) were processed to compute Land Surface Temperature (LST) of the city. The prediction of LULC changes and LST was done for year 2030 using Cellular Automata Markov Chain Model. The accuracy of classified and prediction maps was checked using Kappa Index. The LULC analysis revealed 4.14% increase in the built-up area and 3.43% decrease in vegetation cover of the city during 1989 to 2020. Both land covers are expected to change in the future (year 2030) by + 1.31% (built-up) and − 1.1% (vegetation). Furthermore, a declining trend in the barren land and water bodies was also observed over time. These LULC changes were found affecting the LST of study area. The transformation of vegetation cover into built-up area resulted in an increase in LST over time. A notable rise of 4.5 °C (summer) and 5.7 °C (winter) in the mean LST of Sialkot was observed during 1989 to 2020 and further increases are anticipated in year 2030. This study calls for attention of the policy makers to reduce human impact on the local climate of the city. The study will also help city developers in analyzing the urban population growth trend, finding suitable location to built new infrastructure by governmental authorities and how the rising temperature can affect energy demand and agriculture production of the city in future.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3