Enhancing scanning electron microscopy imaging quality of weakly conductive samples through unsupervised learning

Author:

Gao Xin,Huang Tao,Tang Ping,Di Jianglei,Zhong Liyun,Zhang Weina

Abstract

AbstractScanning electron microscopy (SEM) is a crucial tool for analyzing submicron-scale structures. However, the attainment of high-quality SEM images is contingent upon the high conductivity of the material due to constraints imposed by its imaging principles. For weakly conductive materials or structures induced by intrinsic properties or organic doping, the SEM imaging quality is significantly compromised, thereby impeding the accuracy of subsequent structure-related analyses. Moreover, the unavailability of paired high–low quality images in this context renders the supervised-based image processing methods ineffective in addressing this challenge. Here, an unsupervised method based on Cycle-consistent Generative Adversarial Network (CycleGAN) was proposed to enhance the quality of SEM images for weakly conductive samples. The unsupervised model can perform end-to-end learning using unpaired blurred and clear SEM images from weakly and well-conductive samples, respectively. To address the requirements of material structure analysis, an edge loss function was further introduced to recover finer details in the network-generated images. Various quantitative evaluations substantiate the efficacy of the proposed method in SEM image quality improvement with better performance than the traditional methods. Our framework broadens the application of artificial intelligence in materials analysis, holding significant implications in fields such as materials science and image restoration.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”

Guang-dong Provincial Key Laboratory of Information Photonics Technology

Guangzhou Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3