Author:
Burlingame Erik A.,McDonnell Mary,Schau Geoffrey F.,Thibault Guillaume,Lanciault Christian,Morgan Terry,Johnson Brett E.,Corless Christopher,Gray Joe W.,Chang Young Hwan
Abstract
AbstractSpatially-resolved molecular profiling by immunostaining tissue sections is a key feature in cancer diagnosis, subtyping, and treatment, where it complements routine histopathological evaluation by clarifying tumor phenotypes. In this work, we present a deep learning-based method called speedy histological-to-immunofluorescent translation (SHIFT) which takes histologic images of hematoxylin and eosin (H&E)-stained tissue as input, then in near-real time returns inferred virtual immunofluorescence (IF) images that estimate the underlying distribution of the tumor cell marker pan-cytokeratin (panCK). To build a dataset suitable for learning this task, we developed a serial staining protocol which allows IF and H&E images from the same tissue to be spatially registered. We show that deep learning-extracted morphological feature representations of histological images can guide representative sample selection, which improved SHIFT generalizability in a small but heterogenous set of human pancreatic cancer samples. With validation in larger cohorts, SHIFT could serve as an efficient preliminary, auxiliary, or substitute for panCK IF by delivering virtual panCK IF images for a fraction of the cost and in a fraction of the time required by traditional IF.
Funder
American Cancer Society
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009).
2. Naik, S., Doyle, S., Madabhushi, A., Tomaszewski, J. E. & Feldman, M. D. Automated gland segmentation and gleason grading of prostate histology by integrating low-, high-level and domain specific information. In Workshop on Microscopic Image Analysis with Applications in Biology (2007).
3. Naik, S. et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 284–287 (2008). https://doi.org/10.1109/ISBI.2008.4540988.
4. Langer, L. et al. Computer-aided diagnostics in digital pathology: automated evaluation of early-phase pancreatic cancer in mice. Int. J. CARS 10, 1043–1054 (2015).
5. Duraiyan, J., Govindarajan, R., Kaliyappan, K. & Palanisamy, M. Applications of immunohistochemistry. J. Pharm. Bioallied Sci. 4, S307–S309 (2012).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献